m.kelas-karyawan-ftumj.prestasi.web.id Layanan Informasi 17 Jam
Telp/Fax : 021-8762002, 8762003, 8762004, 87912360
HP/SMS : 081 1110 4824 27, 0812 9526 2009, 08523 1234 000
WhatsApp : 0817 0816 486, 0812 9526 2009
email : _Hubungi Kami__ silahkan klik
Chatting dengan Staf :
ggkarir.com
ggiklan.com
Pilih Bahasa :   ID   EN   Permintaan Katalog / Brosur (GRATIS via POS)   Kelas Karyawan   Reguler
Kedutaan KBRIKelas MalamS2PartaiUmumReferensi ICTAl Quran onlineSastraElektronikaAntPerangkat Lunak (Software)Debat PolitikPendidikan

   
Cari  
    Informatika Komputer

    Sebelumnya  (List of unsolved problems in l ...) (List of unsolved problems in n ...)  Berikutnya    

Daftar/Tabel -- unsolved problems in mathematics

This article lists some unsolved problems in mathematics. See individual articles for details and sources.

Contents

Millennium Prize Problems

Of the seven Millennium Prize Problems set by the Clay Mathematics Institute, six have yet to be solved:

  • P versus NP
  • Hodge conjecture
  • Riemann hypothesis
  • Yang–Mills existence and mass gap
  • Navier–Stokes existence and smoothness
  • Birch and Swinnerton-Dyer conjecture.

The seventh problem, the Poincaré conjecture, has been solved. The smooth four-dimensional Poincaré conjecture is still unsolved. That is, can a four-dimensional topological sphere have two or more inequivalent smooth structures?

Other still-unsolved problems

Additive number theory

  • Goldbach's conjecture and its weak version
  • The values of g(k) and G(k) in Waring's problem
  • Collatz conjecture (3n + 1 conjecture)
  • Gilbreath's conjecture
  • Erdős conjecture on arithmetic progressions
  • Erdős–Turán conjecture on additive bases
  • Pollock octahedral numbers conjecture

Number theory: prime numbers

  • Catalan's Mersenne conjecture
  • Twin prime conjecture
  • The Gaussian moat problem: is it possible to find an infinite sequence of distinct Gaussian prime numbers such that the difference between consecutive numbers in the sequence is bounded?
  • Are there infinitely many prime quadruplets?
  • Are there infinitely many Mersenne primes (Lenstra–Pomerance–Wagstaff conjecture); equivalently, infinitely many even perfect numbers?
  • Are there infinitely many Sophie Germain primes?
  • Are there infinitely many regular primes, and if so is their relative density e^{-1/2}?
  • Are there infinitely many Cullen primes?
  • Are there infinitely many palindromic primes in base 10?
  • Are there infinitely many Fibonacci primes?
  • Are all Mersenne numbers of prime index square-free?
  • Are there infinitely many Wieferich primes?
  • Are there for every a ≥ 2 infinitely many primes p such that ap − 1 ≡ 1 (mod p2)?[1]
  • Are there infinitely many Wilson primes?
  • Are there any Wall–Sun–Sun primes?
  • Is every Fermat number 22n + 1 composite for n > 4?
  • Are all Fermat numbers square-free?
  • Is 78,557 the lowest Sierpinski number?
  • Is 509,203 the lowest Riesel number?
  • Fortune's conjecture (that no Fortunate number is composite)
  • Polignac's conjecture
  • Landau's problems
  • Does every prime number appear in the Euclid–Mullin sequence?
  • Does the converse of Wolstenholme's theorem hold for all natural numbers?

General number theory

  • abc conjecture
  • Do any odd perfect numbers exist?
  • Are there infinitely many perfect numbers?
  • Do quasiperfect numbers exist?
  • Do any odd weird numbers exist?
  • Do any Lychrel numbers exist?
  • Is 10 a solitary number?
  • Do any Taxicab(5, 2, n) exist for n>1?
  • Brocard's problem: existence of integers, n,m, such that n!+1=m2 other than n=4,5,7
  • Distribution and upper bound of mimic numbers
  • Littlewood conjecture
  • Congruent number problem (a corollary to Birch and Swinnerton-Dyer conjecture, per Tunnell's theorem)

Algebraic number theory

  • Are there infinitely many real quadratic number fields with unique factorization?
  • Brumer–Stark conjecture
  • Characterize all algebraic number fields that have some power basis.

Discrete geometry

  • Solving the Happy Ending problem for arbitrary n
  • Finding matching upper and lower bounds for K-sets and halving lines
  • The Hadwiger conjecture on covering n-dimensional convex bodies with at most 2n smaller copies

Ramsey theory

  • The values of the Ramsey numbers, particularly R(5, 5)
  • The values of the Van der Waerden numbers

General algebra

  • Hilbert's sixteenth problem
  • Hadamard conjecture
  • Existence of perfect cuboids

Combinatorics

  • Number of Magic squares (sequence A006052 in OEIS)
  • Finding a formula for the probability that two elements chosen at random generate the symmetric group S_n
  • Frankl's union-closed sets conjecture: for any family of sets closed under sums there exists an element (of the underlying space) belonging to half or more of the sets
  • The Lonely runner conjecture: if k+1 runners with pairwise distinct speeds run round a track of unit length, will every runner be "lonely" (that is, be at least a distance 1/(k+1) from each other runner) at some time?
  • Singmaster's conjecture: is there a finite upper bound on the multiplicities of the entries greater than 1 in Pascal's triangle?
  • The 1/3–2/3 conjecture: does every finite partially ordered set contain two elements x and y such that the probability that x appears before y in a random linear extension is between 1/3 and 2/3?
  • Conway's thrackle conjecture

Graph theory

  • Barnette's conjecture that every cubic bipartite three-connected planar graph has a Hamiltonian cycle
  • The Erdős–Gyárfás conjecture on cycles with power-of-two lengths in cubic graphs
  • The Erdős–Hajnal conjecture on finding large homogeneous sets in graphs with a forbidden induced subgraph
  • The Hadwiger conjecture relating coloring to clique minors
  • The Erdős–Faber–Lovász conjecture on coloring unions of cliques
  • The total coloring conjecture
  • The list coloring conjecture
  • The Ringel–Kotzig conjecture on graceful labeling of trees
  • The Hadwiger–Nelson problem on the chromatic number of unit distance graphs
  • Deriving a closed-form expression for the percolation threshold values, especially p_c (square site)
  • Tutte's conjectures that every bridgeless graph has a nowhere-zero 5-flow and every bridgeless graph without the Petersen graph as a minor has a nowhere-zero 4-flow
  • The Reconstruction conjecture and New digraph reconstruction conjecture concerning whether or not a graph is recognizable by the vertex deleted subgraphs.
  • The cycle double cover conjecture that every bridgeless graph has a family of cycles that includes each edge twice.
  • Does a Moore graph with girth 5 and degree 57 exist?

Analysis

  • The Jacobian conjecture
  • Schanuel's conjecture
  • Lehmer's conjecture
  • Pompeiu problem
  • Are \gamma (the Euler–Mascheroni constant), π+e, π-e, πe, π/e, πe, π2, ππ, eπ2, ln π, 2e, ee, Catalan's constant or Khinchin's constant rational, algebraic irrational, or transcendental? What is the irrationality measure of each of these numbers?[2][3][4][5][6][7][8][9]
  • The Khabibullin’s conjecture on integral inequalities

Dynamics

  • Furstenberg conjecture – Is every invariant and ergodic measure for the \times 2,\times 3 action on the circle either Lebesgue or atomic?
  • Margulis conjecture — Measure classification for diagonalizable actions in higher-rank groups

Partial differential equations

  • Regularity of solutions of Vlasov–Maxwell equations
  • Regularity of solutions of Euler equations

Group theory

  • Is every finitely presented periodic group finite?
  • The inverse Galois problem: is every finite group the Galois group of a Galois extension of the rationals?
  • For which positive integers m, n is the free Burnside group B(m,n) finite? In particular, is B(2, 5) finite?
  • Is every group surjunctive?

Set theory

  • The problem of finding the ultimate core model, one that contains all large cardinals.
  • If ℵω is a strong limit cardinal, then 2ω < ℵω1 (see Singular cardinals hypothesis). The best bound, ℵω4, was obtained by Shelah using his pcf theory.
  • Woodin's Ω-hypothesis.
  • Does the consistency of the existence of a strongly compact cardinal imply the consistent existence of a supercompact cardinal?
  • (Woodin) Does the Generalized Continuum Hypothesis below a strongly compact cardinal imply the Generalized Continuum Hypothesis everywhere?
  • Does there exist a Jonsson algebra on ℵω?
  • Without assuming the axiom of choice, can a nontrivial elementary embedding VV exist?
  • Is it consistent that {\mathfrak p < \mathfrak t}? (This problem was recently solved by Malliaris and Shelah,[10] who showed that {\mathfrak p = \mathfrak t} is a theorem of ZFC.)
  • Does the Generalized Continuum Hypothesis entail {\diamondsuit(E^{\lambda^+}_{cf(\lambda)}}) for every singular cardinal \lambda?

Other

  • Invariant subspace problem
  • Problems in Latin squares
  • Problems in loop theory and quasigroup theory
  • Dixmier conjecture
  • Baum-Connes conjecture
  • Generalized star height problem
  • Assorted sphere packing problems, e.g. the densest irregular hypersphere packings
  • Closed curve problem: Find (explicit) necessary and sufficient conditions that determine when, given two periodic functions with the same period, the integral curve is closed.[11]
  • Toeplitz' conjecture (open since 1911)

Problems solved recently

  • Gromov's problem on distortion of knots (John Pardon, 2011)
  • Circular law (Terence Tao and Van H. Vu, 2010)
  • Hirsch conjecture (Francisco Santos Leal, 2010[12])
  • Serre's modularity conjecture (Chandrashekhar Khare and Jean-Pierre Wintenberger, 2008[13])
  • Heterogeneous tiling conjecture (squaring the plane) (Frederick V. Henle and James M. Henle, 2007)
  • Road coloring conjecture (Avraham Trahtman, 2007)
  • The Angel problem (Various independent proofs, 2006)
  • The Langlands–Shelstad fundamental lemma (Ngô Bảo Châu and Gérard Laumon, 2004)
  • Stanley–Wilf conjecture (Gábor Tardos and Adam Marcus, 2004)
  • Green–Tao theorem (Ben J. Green and Terence Tao, 2004)
  • Cameron–Erdős conjecture (Ben J. Green, 2003, Alexander Sapozhenko, 2003, conjectured by Paul)[14]
  • Strong perfect graph conjecture (Maria Chudnovsky, Neil Robertson, Paul Seymour and Robin Thomas, 2002)
  • Poincaré conjecture (Grigori Perelman, 2002)
  • Catalan's conjecture (Preda Mihăilescu, 2002)
  • Kato's conjecture (Auscher, Hofmann, Lacey, McIntosh, and Tchamitchian, 2001)
  • The Langlands correspondence for function fields (Laurent Lafforgue, 1999)
  • Taniyama–Shimura conjecture (Wiles, Breuil, Conrad, Diamond, and Taylor, 1999)
  • Kepler conjecture (Thomas Hales, 1998)
  • Milnor conjecture (Vladimir Voevodsky, 1996)
  • Fermat's Last Theorem (Andrew Wiles and Richard Taylor, 1995)
  • Bieberbach conjecture (Louis de Branges, 1985)
  • Princess and monster game (Shmuel Gal, 1979)
  • Four color theorem (Appel and Haken, 1977)

See also

References

  1. ^ Ribenboim, P. (2006). Die Welt der Primzahlen (in German) (2 ed.). Springer. pp. 242–243. doi:10.1007/978-3-642-18079-8. ISBN 978-3-642-18078-1. 
  2. ^ Weisstein, Eric W., "Pi" from MathWorld.
  3. ^ Weisstein, Eric W., "e" from MathWorld.
  4. ^ Weisstein, Eric W., "Khinchin's Constant" from MathWorld.
  5. ^ Weisstein, Eric W., "Irrational Number" from MathWorld.
  6. ^ Weisstein, Eric W., "Transcendental Number" from MathWorld.
  7. ^ Weisstein, Eric W., "Irrationality Measure" from MathWorld.
  8. ^ An introduction to irrationality and transcendence methods
  9. ^ Some unsolved problems in number theory
  10. ^ http://arxiv.org/pdf/1208.5424.pdf
  11. ^ Barros, Manuel (1997), "General Helices and a Theorem of Lancret", American Mathematical Society 125: 1503–1509.
  12. ^ Franciscos Santos (2012). "A counterexample to the Hirsch conjecture". Annals of Mathematics (Princeton University and Institute for Advanced Study) 176 (1): 383–412. doi:10.4007/annals.2012.176.1.7. 
  13. ^ Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009), "Serre’s modularity conjecture (I)", Inventiones Mathematicae 178 (3): 485–504, doi:10.1007/s00222-009-0205-7 and Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009), "Serre’s modularity conjecture (II)", Inventiones Mathematicae 178 (3): 505–586, doi:10.1007/s00222-009-0206-6.
  14. ^ Green, Ben (2004), "The Cameron-Erdős conjecture", The Bulletin of the London Mathematical Society 36 (6): 769–778, arXiv:math.NT/0304058, doi:10.1112/S0024609304003650, MR 2083752.

Books discussing unsolved problems

  • Fan Chung; Ron Graham (1999). Erdos on Graphs: His Legacy of Unsolved Problems. AK Peters. ISBN 1-56881-111-X. 
  • Hallard T. Croft; Kenneth J. Falconer; Richard K. Guy (1994). Unsolved Problems in Geometry. Springer. ISBN 0-387-97506-3. 
  • Richard K. Guy (2004). Unsolved Problems in Number Theory. Springer. ISBN 0-387-20860-7. 
  • Victor Klee; Stan Wagon (1996). Old and New Unsolved Problems in Plane Geometry and Number Theory. The Mathematical Association of America. ISBN 0-88385-315-9. 
  • Marcus Du Sautoy (2003). The Music of the Primes: Searching to Solve the Greatest Mystery in Mathematics. Harper Collins. ISBN 0-06-093558-8. 
  • John Derbyshire (2003). Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Joseph Henry Press. ISBN 0-309-08549-7. 
  • Keith Devlin (2006). The Millennium Problems - The Seven Greatest Unsolved* Mathematical Puzzles Of Our Time. Barnes & Noble. ISBN [[Special:BookSources/0-7607-8659-8|0-7607-8659-8[[Category:Articles with invalid ISBNs]]]]. 
  • Vincent D. Blondel, Alexandre Megrestski (2004). Unsolved problems in mathematical systems and control theory. Princeton University Press. ISBN 0-691-11748-9. 

Books discussing recently solved problems

  • Simon Singh (2002). Fermat's Last Theorem. Fourth Estate. ISBN 1-84115-791-0. 
  • Donal O'Shea (2007). The Poincaré Conjecture. Penguin. ISBN 978-1-84614-012-9. 
  • George G. Szpiro (2003). Kepler's Conjecture. Wiley. ISBN 0-471-08601-0. 
  • Mark Ronan (2006). Symmetry and the Monster. Oxford. ISBN 0-19-280722-6. 

External links

    Sebelumnya  (List of unsolved problems in l ...) (List of unsolved problems in n ...)  Berikutnya    





Tags: List of unsolved problems in mathematics, Informatika Komputer, 2243, Daftar/Tabel unsolved problems in mathematics This article lists some unsolved problems in mathematics, See individual articles for details and sources, Contents Millennium Prize Problems 2 Other still unsolved problems 2.1 Additive number theory 2.2 Number theory: prime numbers 2.3 General number theory 2.4 Algebraic number theory 2.5 Discrete geometry 2.6 Ramsey theory 2.7 General algebra 2., List of unsolved problems in mathematics, Bahasa Indonesia, Contoh Instruksi, Tutorial, Referensi, Buku, Petunjuk m.kelas karyawan ftumj, prestasi.web.id
 Program Magister Ilmu Komunikasi (MIKom, MIK)    Kepustakaan Bebas    Program Perkuliahan Paralel    Soal-Jawab Psikotes/TPA    Program Kuliah Gratis    Download Katalog    Bursa Karir
Perkuliahan Karyawan (P2K) (Hybrid)

Koleksi Jenis Foto
Penerimaan Mahasiswa/i
Program Studi
Layanan + Download
UU Sisdiknas & Pemerintah Mendukung
Perkuliahan Karyawan
(P2K)
(Hybrid)

Pustaka Khusus
Daftar Website Perkuliahan Karyawan
Daftar Website Kuliah Shift
Daftar Website Semua PTS
Daftar Website Program Reguler Pagi/Siang
Daftar Website Program Magister (S2)

 Kuliah Hybrid di 112 PTS Terbaik    Try Out Online Gratis    Pendaftaran Online    Permintaan Keringanan Biaya Kuliah    Berbagai Perdebatan    Buku Referensi    Jadwal Sholat    Qur'an Online    Kuliah Shift    Program Perkuliahan Reguler Pagi/Siang    Semua Publikasi
Penyemaian bibit Kacang Tunggak, Komposisi zat gizi Kacang Bogor, Cara budi daya benih / biji Kacang Gude di pot / polibag, dsb.
Manfaat dan khasiat Gendola (Binahong Merah)

Sampaikan ke Rekan Anda
Nama Anda

Email Anda

Email Rekan 1

Email Rekan 2 (tidak wajib)

Email Rekan 3 (tidak wajib)
⛧ harus diisi dengan benar

Permintaan Brosur
(GRATIS via POS)
Nama Penerima

Alamat Jelas

Provinsi & Kota

Kode Pos

Email (tidak wajib)

⊙ harus diisi lengkap & jelas
Atau kirimkan nama dan
alamat lengkap via SMS ke HP:
0811 1990 9026


Download BROSUR
Brosur Kelas Karyawan
Gabungan Seluruh Wilayah Indonesia

pdf (11,2 MB)ZIP (8,8 MB)
Image/jpg (36,2 MB)
Brosur Kelas Karyawan
JABODETABEK

pdf (5,5 MB)ZIP (4,4 MB)
Image/jpg (13,2 MB)
Brosur Kelas Karyawan
DIY,JATENG,JATIM & BALI

pdf (4,4 MB)ZIP (3,5 MB)
Image/jpg (14,5 MB)
Brosur Kelas Karyawan
JAWA BARAT

pdf (2,8 MB)ZIP (2,2 MB)
Image/jpg (7,1 MB)
Brosur Kelas Karyawan
SULAWESI

pdf (1,9 MB)ZIP (1,5 MB)
Image/jpg (5,6 MB)
Brosur Kelas Karyawan
SUMATERA & BATAM

pdf (2,2 MB)ZIP (1,7 MB)
Image/jpg (6,5 MB)
Brosur Kuliah Reguler
pdf (4,1 Mb)ZIP (8,4 Mb)
Strategi Meningkatkan
Kualitas Pendidikan, Pendapatan dan Sumber Daya PTS

pdf(6 Mb)Image/jpg(16 Mb)

STRATEGI Meningkatkan
Kualitas Pendidikan, Pendapatan dan Sumber Daya PTS
http://kpt.co.id
Terobosan Baru

PT. Gilland Ganesha
Membutuhkan Segera

  • Design Grafis
  • Web Programmer

Penjelasan Lebih Lanjut di :
Info kerja

Kumpulan foto kucing, karakteristik kucing, menjaga kesehatan kucing, dsb.
155 Jenis Kucing

Twitter Kuliah Karyawan

Tautan Elok
silakan klik
Ilmu Dunia

1. Cyber University - Universitas Siber Indonesia - Kampus :Jl. TB Simatupang No.6, RT.7/RW.5, Kec. Jagakarsa, Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12530
2. Fakultas Pertanian UMJ Jakarta - Fakultas Pertanian Universitas Muhammadiyah Jakarta - Kampus Pertanian : Jl. KH. Ahmad Dahlan, Cirendeu, Ciputat, Jakarta Selatan 15419
3. Fakultas Teknik UMJ - Fakultas Teknik Universitas Muhammadiyah Jakarta - Kampus FT UMJ : Jl. Cempaka Putih 2 Tengah No. 27, Jakarta Pusat
4. FISIP UMJ Jakarta - Fakultas Ilmu Sosial & Ilmu Politik Universitas Muhammadiyah Jakarta - Kampus FISIP - UMJ : Jl. KH. Ahmad Dahlan, Cirendeu, Ciputat, Jakarta Selatan 15419
5. FKM UMJ - Fakultas Kesehatan Masyarakat Universitas Muhammadiyah Jakarta - Kampus FKM UMJ : Jl. K.H. Ahmad Dahlan, Cireundeu, Kec. Ciputat, Kota Tangerang Selatan, Banten 15419
6. IBI Kosgoro Jagakarsa - Institut Bisnis & Informatika Kosgoro 1957 Jagakarsa - Kampus A : Jl. Moch. Kahfi II No 33 Jagakarsa Kota Jakarta Selatan - DKI Jakarta 13550--pemisahnya--Kampus B : Jl. Al Amanah No.1, RT.8/RW.10, Wijaya Kusuma,
- Kampus B : Jl. Al Amanah No.1, RT.8/RW.10, Wijaya Kusuma, Kec. Grogol petamburan, Kota Jakarta Barat, Daerah Khusus Ibukota Jakarta 11460
7. IBI Kosgoro Jelambar - Institut Bisnis & Informatika Kosgoro 1957 Jelambar - Kampus A : Jl. Moch. Kahfi II No 33 Jagakarsa Kota Jakarta Selatan - DKI Jakarta 13550--pemisahnya--Kampus B : Jl. Al Amanah No.1, RT.8/RW.10, Wijaya Kusuma,
- Kampus B : Jl. Al Amanah No.1, RT.8/RW.10, Wijaya Kusuma, Kec. Grogol petamburan, Kota Jakarta Barat, Daerah Khusus Ibukota Jakarta 11460
8. IKIP Widya Darma Surabaya - IKIP Widya Darma Surabaya - Kampus IKIP Widya Darma : Jl. Ketintang No. 147-151 Surabaya
9. IMA - Institut Miftahul Huda Al-Azhar - Kampus : Jl. Pesantren No.2, Kujangsari, Kec. Langensari, Kota Banjar, Jawa Barat 46324
unipi.web.id  |  magister-unkris.web.id  |  stiedelisumatera.web.id  |  mm-mputantular.web.id  |  mm-untara.web.id  |  p2k.nusamandiri.ac.id  |  uin-al-azhaar.web.id  |  unismu.web.id  |  unusida.web.id  |  stiepasim.web.id  |  s2-uwks.web.id